
Scanned by CamScanner

1

Learn Python

The Way of the Program

The single most important skill for a computer scientist is problem

solving. Problem solving means the ability to formulate problems, think

creatively about solutions, and express a solution clearly and accurately. As

it turns out, the process of learning to program is an excellent opportunity to

practice problem solving skills.

Algorithms

If problem solving is a central part of computer science, then the solutions
that you create through the problem solving process are also important. In
computer science, we refer to these solutions as algorithms. An algorithm is
a step by step list of instructions that if followed exactly will solve the problem
under consideration.

Our goal in computer science is to take a problem and develop an algorithm
that can serve as a general solution. Once we have such a solution, we can
use our computer to automate the execution. As noted above, programming
is a skill that allows a computer scientist to take an algorithm and represent
it in a notation (a program) that can be followed by a computer. These
programs are written in programming languages.

The Python Programming Language

The programming language you will be learning is Python. Python is a
widely-used, interpreted, object-oriented, and high-level programming
language with dynamic semantics, used for general-purpose programming.
It was created by Guido van Rossum, and first released on February 20,
1991. Python is an example of a high-level language; other high-level
languages you might have heard of are C++, PHP, and Java.

As you might infer from the name high-level language, there are also low-
level languages, sometimes referred to as machine languages or assembly
languages. Machine language is the encoding of instructions in binary so
that they can be directly executed by the computer. Assembly language uses
a slightly easier format to refer to the low level instructions. Loosely speaking,
computers can only execute programs written in low-level languages.

To be exact, computers can actually only execute programs written in
machine language. Thus, programs written in a high-level language (and
even those in assembly language) have to be processed before they can
run. This extra processing takes some time, which is a small disadvantage

2

of high-level languages. However, the advantages to high-level languages
are enormous.

First, it is much easier to program in a high-level language. Programs written
in a high-level language take less time to write, they are shorter and easier
to read, and they are more likely to be correct. Second, high-level languages
are portable, meaning that they can run on different kinds of computers with
few or no modifications. Low-level programs can run on only one kind of
computer and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level
languages. Low-level languages are used only for a few specialized
applications.

Two kinds of programs process high-level languages into low-level
languages: interpreters and compilers. An interpreter reads a high-level
program and executes it, meaning that it does what the program says. It
processes the program a little at a time, alternately reading lines and
performing computations.

A compiler reads the program and translates it completely before the
program starts running. In this case, the high-level program is called
the source code, and the translated program is called the object code or
the executable. Once a program is compiled, you can execute it repeatedly
without further translation.

Many modern languages use both processes. They are first compiled into a
lower level language, called byte code, and then interpreted by a program
called a virtual machine. Python uses both processes, but because of the
way programmers interact with it, it is usually considered an interpreted
language.

There are two ways to use the Python interpreter: shell mode and program
mode. In shell mode, you type Python expressions into the Python shell, and

3

the interpreter immediately shows the result. The example below shows the
Python shell at work.

Python 3.9.0 (tags/v3.9.0:9cf6752, Oct 5 2020, 15:34:40) [MSC v.1927 64
bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>> 2 + 3
5
>>>

The >>> is called the Python prompt. The interpreter uses the prompt to
indicate that it is ready for instructions. We typed 2 + 3. The interpreter
evaluated our expression and replied 5. On the next line it gave a new
prompt indicating that it is ready for more input.

Working directly in the interpreter is convenient for testing short bits of code
because you get immediate feedback. Think of it as scratch paper used to
help you work out problems.

Alternatively, you can write an entire program by placing lines of Python
instructions in a file and then use the interpreter to execute the contents of
the file as a whole. Such a file is often referred to as source code. For
example, we used a text editor to create a source code file
named firstprogram.py with the following contents:

print("My first program adds two numbers, 2 and 3:")
print(2 + 3)

By convention, files that contain Python programs have names that end
with .py or .pyw . Following this convention will help your operating system
and other programs identify a file as containing python code.

=============== RESTART: C:\Users\Sanjeev\AppData\Local\Programs
\Python\Python39\firstprogram.py ==============
My first program adds two numbers, 2 and 3:
5

More About Programs

4

A program is a sequence of instructions that specifies how to perform a
computation. The computation might be something as complex as rendering
an html page in a web browser or encoding a video and streaming it across
the network. It can also be a symbolic computation, such as searching for
and replacing text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions
appear in just about every language.

input

Get data from the keyboard, a file, or some other device.

output

Display data on the screen or send data to a file or other device.

math and logic

Perform basic mathematical operations like addition and multiplication and
logical operations like and, or, and not.

conditional execution

Check for certain conditions and execute the appropriate sequence of
statements.

repetition

Perform some action repeatedly, usually with some variation.

Thus, we can describe programming as the process of breaking a large,
complex task into smaller and smaller subtasks until the subtasks are simple
enough to be performed with sequences of these basic instructions.

Debugging

Programming is a complex process. Since it is done by human beings, errors
may often occur. Programming errors are called bugs and the process of
tracking them down and correcting them is called debugging. Some claim
that in 1945, a dead moth caused a problem on relay number 70, panel F, of
one of the first computers at Harvard, and the term bug has remained in use
since.

Three kinds of errors can occur in a program: syntax errors, runtime
errors, and semantic errors. It is useful to distinguish between them in
order to track them down more quickly.

Syntax errors

http://en.wikipedia.org/wiki/Syntax_error
http://en.wikipedia.org/wiki/Runtime_error
http://en.wikipedia.org/wiki/Runtime_error
http://en.wikipedia.org/wiki/Logic_error

5

Python can only execute a program if the program is syntactically correct;
otherwise, the process fails and returns an error message. Syntax refers to
the structure of a program and the rules about that structure. For example,
in English, a sentence must begin with a capital letter and end with a period.
this sentence contains a syntax error. So does this one

Runtime Errors

The second type of error is a runtime error, so called because the error does
not appear until you run the program. These errors are also
called exceptions because they usually indicate that something exceptional
(and bad) has happened.

Semantic Errors

The third type of error is the semantic error. If there is a semantic error in
your program, it will run successfully in the sense that the computer will not
generate any error messages. However, your program will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying
semantic errors can be tricky because it requires you to work backward by
looking at the output of the program and trying to figure out what it is doing.

How to use Python

1. Using default IDLE – Basic Python Editor.
2. Using Anaconda Package Manager – Most Advance Package

manager for running Python programs includes Jupyter Notebook.
3. Using Jupyter Notebook – Widely used Interactive and GUI based

Python editor.

Just download any of the above open source software and start learning
Python.

IDLE Download Link

https://www.python.org/downloads/

Anaconda Package Manager download link

https://www.anaconda.com/products/individual

Jupyter Notebook download link

https://jupyter.org/

Online Python Editor and Interpreter

http://pythontutor.com/visualize.html#mode=edit

https://www.python.org/downloads/
https://www.anaconda.com/products/individual
https://jupyter.org/
http://pythontutor.com/visualize.html#mode=edit

6

References :

https://runestone.academy/

https://docs.python.org/

https://www.python.org/

Regards,

[SANJEEV SHARMA]

sanjeevsharmaemailid@gmail.com

https://runestone.academy/
https://docs.python.org/
https://www.python.org/
mailto:sanjeevsharmaemailid@gmail.com

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

Scanned by CamScanner

	Valid Building safety certificate.pdf (p.1)
	Learn Python.pdf (p.2-7)
	DEO certificate.pdf (p.8)
	Valid Water,health and Sanitation certificate.pdf (p.9)
	Fire Safety certificate.pdf (p.10)
	VMC LIST.pdf (p.11)
	PTA List.pdf (p.12)

